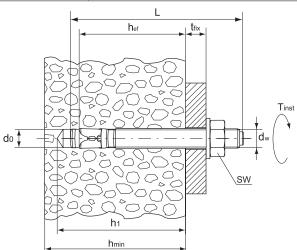


2.3 ERA, ERA A4 — СТАЛЬНЫЕ РАСПОРНЫЕ КЛИНОВЫЕ АНКЕРЫ

НАЗНАЧЕНИЕ

- Для анкеровки в сжатую зону бетона класса С20/25 и выше, природный камень плотной структуры
- Применяется при монтаже: витражей, кронштейнов навесных фасадных систем (НФС), лифтовых направляющих, перильных ограждений, кабельных лотков, колонн, стоек, балок, стремянок, инженерных коммуникаций, оборудования и прочих конструкций


СВОЙСТВА

- Для сквозного, предварительного и дистанционного монтажа
- Имеет техническое свидетельство ФЦС
- Имеет Европейский Технический допуск для сжатой зоны бетона, опция 7
- Успешно прошел испытания на сейсмостойкость в ЦНИИСК им. Кучеренко (Технический отчет по договору №1160/24-45-12/ск)
- Анкер изготовлен из углеродистой стали, соответствует классу 6.8
- Толщина гальванического цинкового слоя не менее 10 мкм
- В исполнении из нержавеющей стали класса А4 допущен для агрессивных сред
- Производит контролируемое расклинивание в отверстии при затяжке гайки установленным моментом
- Предел огнестойкости R120
- Уменьшенная глубина анкеровки позволяет снизить трудозатраты при производстве работ, путем сокращения расхода буров
- Минимальные краевые и осевые расстояния достигаются за счет равномерного распора

МАТЕРИАЛ

табл. 2.3.1

	ERA				
Элемент	Материал	Покрытие (коррозионностойкая сталь)			
Болт	M6, M8, M10: 19MnB4 EN 10269, холодно формованный M12, M16: C30 B KD Euronorm 119-74, холодно формованный	ISO 4042, гальваническое покрытие толщиной ≥ 5мкм			
Распорная гильза	EN 10132-4, холодное формование	ISO 2001 гад размирокоо покрытие тодиниюй > 5мим			
Шайба	DIN 125/1 Углеродистая сталь EN 10139	ISO 2081, гальваническое покрытие толщиной ≥ 5мкм			
Гайка	Класс 8, EN 24032	ISO 4042, гальваническое покрытие толщиной ≥ 5мкм			
	ERA A4				
Болт	Нержавеющая сталь AISI 316-L-Cu X3CrNiCuMo 17-11-3-2 Нержавеющая сталь AISI 316-L X2CrNiMo 17-12-2	EN 10088/3			
Распорная гильза	Нержавеющая сталь AISI 316-L X2CrNiMo 17-12-2	EN 10088/2			
Шайба	DIN 125/1 Нержавеющая сталь A4-140 Hv	AISI 316 аналог EN 10088-2			
Гайка	DIN 934 Нержавеющая сталь A4-70	AISI 316 аналог ISO 3506-2			

где d_0 – диаметр бура, мм

 h_{ef} – эффективная глубина анкеровки, мм

 $t_{\mbox{\tiny fix}}$ – максимальная толщина прикрепляемой детали, мм

h₁ – минимальная глубина отверстия, мм

 ${\sf h}_{\sf min}$ – минимальная толщина материала, мм

L – полная длина анкера, мм

d,, – диаметр резьбы, мм

Т_{iost} – рекомендованный момент затяжки анкера, Нм

SW - размер под ключ

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

табл. 2.3.2

T						табл. 2.3.2
Обозначение	Артикул ERA	Артикул ERA A4	Упаковка, шт.	Макс. толщина прикрепляемой	Полная длина анкера L, мм	Резьба d _w
				детали t _{fix} , мм		
ERA 6/3x45	300931	-	200	3	45	M6
ERA 6/15x65	300933	-	100	15	65	M6
ERA 6/35x85	300935	-	100	35	85	M6
ERA 6/50x100	300937	-	50	50	100	M6
ERA 8/5x50	300939	301109	100	5	50	M8
ERA 8/7x65	300940	-	100	7	65	M8
ERA 8/15x75	300941	301111	100	15	75	M8
ERA 8/30x90	300943	301113	100	30	90	M8
ERA 8/55x115	300945	301115	100	55	115	M8
ERA 8/75x135	300947	301117	100	75	135	M8
ERA 8/105x165	300949	301119	100	105	165	M8
ERA 10/5x60	300951	301121	50	5	60	M10
ERA 10/5x75	300953	301123	50	5	75	M10
ERA 10/20x90	300955	301125	50	20	90	M10
ERA 10/30x100	300957	301127	50	30	100	M10
ERA 10/50x120	300959	301129	50	50	120	M10
ERA 10/75x145	300961	301131	25	75	145	M10
ERA 10/100x170	300963	301133	25	100	170	M10
ERA 10/140x210	300965	301135	25	140	210	M10
ERA 12/7x80	300967	301137	50	7	80	M12
ERA 12/10x100	300969	301139	50	10	100	M12
ERA 12/20x110	300971	301141	50	20	110	M12
ERA 12/45x135	300973	301143	25	45	135	M12
ERA 12/70x160	300975	301145	25	70	160	M12
ERA 12/100x185	300977	301147	25	100	185	M12
ERA 12/115x200	300979	301149	25	115	200	M12
ERA 12/135x220	300981	301151	25	135	220	M12
ERA 12/155x240	300983	301153	25	155	240	M12
ERA 12/170x255	300985	301155	25	170	255	M12
ERA 12/200x285	300987	301157	25	200	285	M12
ERA 12/215x300	300989	301159	25	215	300	M12
ERA 12/240x325	300991	301161	25	240	325	M12
ERA 12/270x335	300993	301163	20	270	335	M12
ERA 16/10x110	301007	301179	20	10	110	M16
ERA 16/15x125	301009	301177	20	15	125	M16
ERA 16/30x145	301011	301181	20	30	145	M16
ERA 16/60x175	301013	301183	20	60	175	M16
ERA 16/100x215	301015	301185	15	100	215	M16
ERA 16/115x230	301017	301187	10	115	230	M16
ERA 16/135x250	301019	301189	10	135	250	M16
ERA 16/155x270	301021	301191	10	155	270	M16
ERA 16/170x285	301023	301193	10	170	285	M16
ERA 16/205x320	301025	301195	10	205	320	M16
ERA 20/30x170	301027	301197	10	30	170	M20
ERA 20/75x215	301029	301199	10	75	215	M20
ERA 24/10x160	301031	301201	10	10	160	M24
ERA 24/10x180	301033	301203	10	10	180	M24
ERA 24/30x200	301035	301205	10	30	200	M24
ERA 24/50x220	301037	301207	10	50	220	M24
ERA 24/90x260	301039	301209	10	90	260	M24
ERA 24/140x310	301041	301211	10	140	310	M24

ПАРАМЕТРЫ УСТАНОВКИ ERA, ERA A4

табл. 2.3.3

Параметр	M6*	M8	M10	M12	M16	M20	M24**
Диаметр бура $\mathbf{d}_{_{\mathrm{o}}}$, мм	6	8	10	12	16	20	24
Минимальная глубина отверстия $\mathbf{h}_{\scriptscriptstyle{1}}$, мм	50	60	70	85	115	130	165
Эффективная глубина анкеровки $\mathbf{h}_{_{\mathrm{ef}}}$, мм	35	40	50	60	85	95	120
Минимальная толщина материала \mathbf{h}_{min} , мм	100	100	100	120	170	200	240
Размер под ключ SW	10	13	17	19	24	30	36
Рекомендованный момент затяжки T_{inst} , HM	6	15	25	50	100	160	200

^{*} Анкер представлен только с оцинкованным покрытием

РАСЧЕТНЫЕ НАГРУЗКИ

табл. 2.3.4

Расчетные нагрузки N _{Rd} , V _{Rd} на одиночный анкер, бетон C 20/25										
Анкер	Нагрузка	Параметр	M6	M8	M10	M12	M16	M20		
ΓDΛ	Вырывная	N _{Rd} , кН	4,0	6,0	8,0	13,3	23,3	26,6		
ERA	Срезающая	V _{Rd} , ĸH	4,0	6,1	9,8	12,2	28,2	34,3		

табл. 2.3.5

	Расчетные нагрузки N _{Rd} , V _{Rd} на одиночный анкер, бетон C20/25										
Анкер	Нагрузка	Параметр	M6	M8	M10	M12	M16	M20			
ERA A4	Вырывная	N _{Rd} , кН	-	5,0	8,0	15,6	23,3	26,6			
ENA A4	Срезающая	V _{Rd} , кН	-	8,5	11,9	20,6	38,3	59,0			

ЗНАЧЕНИЯ ДЛЯ РАСЧЕТА ФАКТОРОВ ОСЕВЫХ И КРАЕВЫХ РАССТОЯНИЙ

табл. 2.3.6

Клиновые анкеры ERA, ERA A4										
Анкер	Параметр	M6	M8	M10	M12	M16	M20			
Характерное краевое расстояние при растрескивании бетона	C _{cr,sp} , MM	105	120	150	180	255	285			
Характерное осевое расстояние при растрескивании бетона	S _{cr,sp} , MM	210	240	300	360	510	570			
Характерное краевое расстояние выхода конуса из бетона	C _{cr,N} , MM	50	60	75	90	130	143			
Характерное осевое расстояние выхода конуса из бетона	S _{cr,N} , MM	105	120	150	180	255	285			
Минимальное краевое расстояние	C _{min} , MM	50	60	75	90	130	143			
Минимальное осевое расстояние	S _{min} , MM	50	60	75	90	130	143			

РАСЧЕТ НЕСУЩЕЙ СПОСОБНОСТИ АНКЕРОВ ERA, ERA A4 ДЛЯ СЖАТОЙ ЗОНЫ БЕТОНА

1. Вырыв

Критерий выбора

$$|N_{Sd}^1 \le N_{Rd} = min(N_{Rd,s}; N_{Rd,p}; N_{Rd,c}; N_{Rd,sp})|$$

 N_{sd}^{1} – вырывная нагрузка на анкер (задается проектировщиком), кH

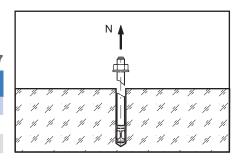
 ${\sf N}_{\sf Rd}$ – вырывная расчетная нагрузка на одиночный анкер, к ${\sf H}$

 $N_{\mbox{\scriptsize Rd,s}}$ – расчетная нагрузка стали на разрыв, кH $\,$ (раздел 1.1)

 $N_{_{\mbox{\scriptsize Rd},p}}$ – расчетная нагрузка вырыва анкера из бетона, кH (раздел 1.2)

 $N_{\text{Rd,c}}^{\ \ \ }$ – расчетная нагрузка разрушения бетонного конуса, кH (раздел 1.3)

 ${\sf N}_{\sf Rd,sp}$ – расчетная нагрузка растрескивания бетона, кH (раздел 1.4)


^{**} Для расчета анкера ERA 24 необходимо обратиться в технический отдел ООО «Простая Механика»

1.1. Расчетная нагрузка стали на разрыв

табл. 2.3.7

Расчетная нагрузка стали на разрыв N _{вd,s}									
Анкер	Параметр	M6	M8	M10	M12	M16	M20		
ERA	N _{Rd,s} , кН	7,4	12,2	20,0	22,5	48,8	70,5		
ERA A4	N _{Rd,s} , кН	-	10,8	17,6	24,8	50,9	85,0		

1.2. Расчетная нагрузка вырыва анкера из бетона

$$N_{Rd,p} = N_{Rd,p}^0 \times f_B$$

 N^{0}_{Bdp} – нормативная нагрузка вырыва анкера из бетона, кН (см. табл. 2.3.8)

f_в – фактор влияния прочности бетона (см. табл. 2.3.9)

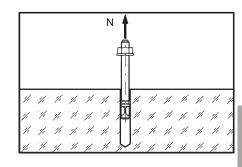


табл. 2.3.8

Нормативная нагрузка вырыва анкера из бетона № _{ва.р} . бетон C20/25										
Анкер	Параметр	M6	M8	M10	M12	M16	M20			
ERA	N ⁰ _{Rd,p} , κΗ	4,0	6,0	8,0	13,3	23,3	26,6			
ERA A4	N ⁰ _{Rd,p} , κH	-	5,0	8,0	*	23,3	26,6			

^{*} Разрушению по конусу

Фактор влияния прочности бетона

$$f_{\rm B} = (f_{\rm ck.cube} / 25)^{0.5}$$

табл. 2.3.9

	Фактор влияния прочности бетона f _в									
	Бетон	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
f _{ck.cyl}	H/mm²	20	25	30	35	40	45	50		
f _{ck.cube}	H/mm²	25	30	37	45	50	55	60		
f _B		1	1,1	1,22	1,34	1,41	1,45	1,55		

1.3. Расчетная нагрузка разрушения бетонного конуса

$$\left| N_{Rd,c} = N_{Rd,c}^{0} \times f_{c} \times f_{s} \times f_{B} \right|$$

 $N_{\rm Bd\,c}^{\rm 0}$ – нормативная нагрузка разрушения бетонного конуса, кH (см. табл. 2.3.10)

 ${\rm f_c}$ – фактор влияния краевого расстояния, количество факторов соответствует количеству кромок (край бетона), влияющих на работу рассчитываемого анкера, и определяется как их произведение

 $f_{_{S}}$ – фактор влияния осевого расстояния (см. табл. 2.3.11),

количество факторов зависит от соседних анкеров, влияющих на работу рассчитываемого анкера, и определяется как их произведение

 $f_{\rm p}$ – фактор влияния прочности бетона (см. табл. 2.3.9)

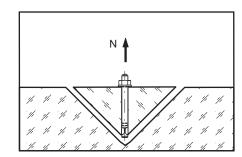
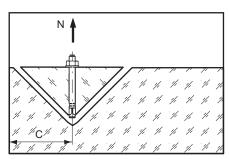
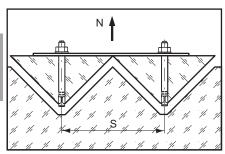



табл. 2.3.10


	Нормативная нагрузка разрушения бетонного конуса N _{rd,c}										
Анкер	Параметр	M6	M8	M10	M12	M16	M20				
ERA	No KH	6,9	8,5	11,9	15,6	26,3	31,1				
ERA A4	N ⁰ _{Rd,p} , κH	-	8,5	11,9	15,6	26,3	31,1				

Фактор влияния краевого расстояния

$$\left| f_{C}^{*} = 0.35 + C/S_{cr,N} + 0.6(C/S_{cr,N})^{2} \le 1 \right|$$

* Для анкеров с $C_{cr,N} = C_{min}$ (см. табл. 2.3.6), f_c =1

Фактор влияния осевого расстояния

$$f_S = (1 + S/S_{cr,N}) \times 0.5$$

табл. 2.3.11

	Фа	ктор влияния осевого	расстояния f _s для ER <i>I</i>	A и ERA A4, $S_{min} \leq S \leq$	S _{cr,N}	
S, мм	M6	M8	M10	M12	M16	M20
50	0,73					
60	0,78	0,75				
75	0,85	0,81	0,75			
90	0,92	0,87	0,80	0,75		
105	1	0,93	0,85	0,79		
120		1	0,90	0,83		
130			0,93	0,86	0,75	
143			0,96	0,88	0,77	0,75
150			1	0,91	0,79	0,76
160				0,94	0,81	0,78
170				0,97	0,83	0,80
180				1	0,85	0,82
200					0,89	0,85
220					0,93	0,89
240					0,97	0,92
255					1	0,95
270						0,97
285						1
S _{min} , MM	50	60	75	90	130	143
S _{cr,N} , MM	105	120	150	180	255	285

Промежуточные значения получают методом линейной интерполяции

1.4. Расчетная нагрузка растрескивания бетона

$$N_{Rd,sp} \, = N_{Rd,c}^{\,0} \, \times \, f_{c,sp} \, \times \, f_{s,sp} \, \times \, f_{B} \, \times \, f_{h,sp}$$

 $\mathsf{N}^{\scriptscriptstyle{0}}_{\scriptscriptstyle{\mathsf{Rd,c}}}$ – нормативная нагрузка разрушения бетонного конуса, кН (см. табл. 2.3.10)

 $f_{c,sp}^{}$ – фактор влияния краевого расстояния (см. табл. 2.3.12), количество факторов соответствует

количеству кромок (край бетона), влияющих на работу рассчитываемого анкера, и определяется как их произведение

 $f_{s,sp}$ – фактор влияния осевого расстояния (см. табл. 2.3.13), количество факторов зависит от соседних анкеров,

влияющих на работу рассчитываемого анкера, и определяется как их произведение

 $f_{_{\rm B}}$ – фактор влияния прочности бетона (см. табл. 2.3.9)

 $f_{h,sp}$ – фактор влияния толщины материала (см. табл. 2.3.14)

Фактор влияния краевого расстояния

$$f_{c,sp} = \ 0.35 \ + \ C/S_{cr,sp} \ + \ 0.6(C/S_{cr,sp})^2 \ \leq \ 1$$

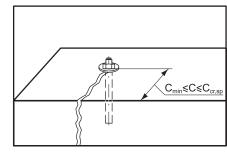


табл. 2.3.12

	Факт	ор влияния краевого р	расстояния f _{с,sp} для ER	\mathbf{A} и ERA A4, $\mathbf{C}_{min} \leq \mathbf{C} \leq \mathbf{C}$	≤ C _{cr,sp}	
С, мм	M6	М8	M10	M12	M16	M20
50	0,61					
60	0,68	0,63				
75	0,77	0,72	0,63			
90	0,88	0,80	0,70	0,63		
105	1	0,89	0,77	0,69		
120		1	0,84	0,75		
130			0,89	0,78	0,63	
143			0,93	0,82	0,66	0,64
150			1	0,85	0,70	0,65
170				0,95	0,74	0,69
180				1	0,77	0,72
195					0,81	0,76
215					0,87	0,81
230					0,92	0,85
240					0,95	0,88
255					1	0,92
270						0,95
285						1
\mathbf{C}_{\min} , MM	50	60	75	90	130	143
$C_{cr,sp}$, mm	105	120	150	180	255	285

Промежуточные значения получают методом линейной интерполяции

Фактор влияния осевого расстояния

$$f_{s,sp} = (1 + S/S_{cr,sp}) \times 0.5$$

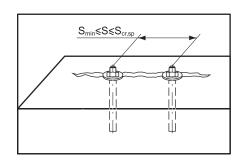


табл. 2.3.13

	Фак	гор влияния осевого р	асстояния f _{s,sp} для ER	A и ERA A4, ${\sf S}_{\sf min} \leq {\sf S} \leq$	S _{cr,sp}	
S, мм	M6	M8	M10	M12	M16	M20
50	0,61					
60	0,64	0,63				
75	0,67	0,66	0,63			
90	0,71	0,68	0,65	0,63		
105	0,75	0,72	0,68	0,65		
130	0,80	0,77	0,71	0,68	0,63	
143	0,83	0,79	0,73	0,69	0,64	0,63
160	0,88	0,83	0,77	0,72	0,66	0,64
180	0,92	0,88	0,80	0,75	0,68	0,66
200	0,97	0,91	0,83	0,78	0,70	0,68
210	1	0,94	0,85	0,79	0,71	0,68
220		0,95	0,87	0,81	0,71	0,69
240		1	0,90	0,83	0,73	0,71
255			0,93	0,85	0,75	0,72
280			0,97	0,89	0,77	0,75
300			1	0,91	0,79	0,76
330				0,95	0,82	0,80
360				1	0,85	0,82
390					0,88	0,84
420					0,91	0,87
450					0,94	0,89
480					0,97	0,92
510					1	0,95
540						0,97
570						1
S _{min} , MM	50	60	75	90	130	143
S _{cr.sp} , MM	210	240	300	360	510	570

Промежуточные значения получают методом линейной интерполяции

Фактор влияния толщины материала

$$f_{h,sp} \, = \, (h/2h_{ef})^{2/3} \, \leq \, 1.5$$

табл. 2.3.14

		Фактор влияния то	лщины материала f _{h,s}	для ERA и ERA A4		
h, mm	M6	M8	M10	M12	M16	M20
100	1,27	1,16	1,00			
120	1,42	1,30	1,12	1,00		
130	1,5	1,37	1,18	1,05		
140		1,45	1,24	1,10		
150		1,5	1,30	1,15		
170			1,41	1,26	1,00	
180			1,47	1,30	1,03	
200			1,5	1,40	1,11	1,00
220				1,5	1,18	1,10
240					1,25	1,17
260					1,33	1,23
280					1,39	1,29
300					1,45	1,35
315					1,5	1,40
330						1,44
350						1,5
h _{ef} , мм	35	40	50	60	85	95
h _{min} , мм	100	100	100	120	170	200

Промежуточные значения получают методом линейной интерполяции

2. Cpe3

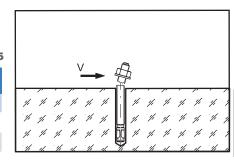
Критерий выбора

$$V_{Sd}^1 \leq \ V_{Rd} \ = \ min \ (V_{Rd,s}; \ V_{Rd,cp}; \ V_{Rd,c})$$

V_{sd} – срезающая нагрузка на анкер (задается проектировщиком), кН

V_{в. -} срезающая расчетная нагрузка на одиночный анкер, кН

V_{Rds} – расчетная срезающая нагрузка по стали, кН (раздел 2.1)


 V_{Rdcp} – расчетная нагрузка скалывания бетона (рычажное разрушение), кН (раздел 2.2)

V_{Bd.c} – расчетная нагрузка разрушения кромки бетона, кН (раздел 2.3)

2.1. Расчетная срезающая нагрузка по стали

табл. 2.3.15

Расчетная срезающая нагрузка по стали V _{Rd.s}							
Анкер	Параметр	M6	M8	M10	M12	M16	M20
ERA	V _{Rd,s} , кН	4,0	6,1	9,8	12,2	28,2	34,3
ERA A4	V _{Rd,s} , кH	-	8,9	14,2	20,6	38,3	59,0

2.2. Расчетная нагрузка скалывания бетона (рычажное разрушение)

$$V_{Rd,cp} = V_{Rd,cp}^0 \times f_c \times f_s \times f_B$$

 $V^0_{_{
m Rd,cp}}$ – нормативная нагрузка скалывания бетона, кH (см. табл. 2.3.16)

f_c – фактор влияния краевого расстояния, количество факторов соответствует количеству кромок (край бетона), влияющих на работу рассчитываемого анкера, и определяется как их произведение, f =1 (см. раздел 1.3)

f₂ – фактор влияния осевого расстояния (см. табл. 2.3.11),

количество факторов зависит от соседних анкеров, влияющих на работу рассчитываемого анкера, и определяется как их произведение

f_в - фактор влияния прочности бетона (см. табл. 2.3.10)

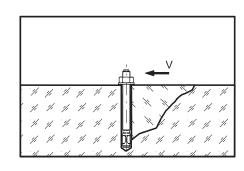


табл. 2.3.16

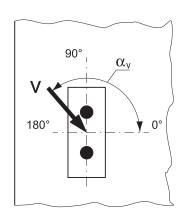
Нормативная нагрузка скалывания бетона V ⁰ _{Rd,cp} , бетон C20/25							
Анкер	Параметр	M6	M8	M10	M12	M16	M20
ERA	$V_{Rd,cp}^0$, κH	6,9	8,5	11,9	31,2	52,6	62,2
ERA A4	V _{Rd,cp} , кH	-	8,5	11,9	31,2	52,6	62,2

2.3 Расчетная нагрузка разрушения кромки бетона

$$V_{Rd,c} = V_{Rd,c}^{0} \times f_{B} \times f_{a} \times f_{cs,V}$$

 $V^{0}_{_{
m Rd,c}}$ – нормативная нагрузка разрушения кромки бетона, кН (см. табл. 2.3.17)

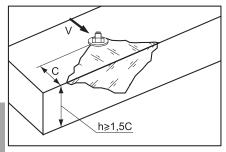
f_в – фактор влияния прочности бетона (см. табл. 2.3.10)


f_a – фактор влияния направления срезающей нагрузки (см. табл. 2.3.18)

f_{cs.V} – фактор влияния осевого и краевого расстояния

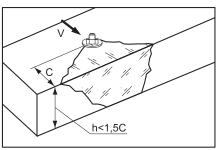
табл. 2.3.17

Нормативная нагрузка разрушения кромки бетона V _{®d,с} для анкеров с минимальным краевым расстоянием, бетон C2O/25							
Анкер	Параметр	M6	M8	M10	M12	M16	M20
ERA	V _{Rd,c} , кН	2,4	3,6	5,5	8,0	16,6	21,9
ERA A4	V _{Rd,c} , кН	-	3,6	5,5	3,6	16,6	21,9
Минимальное краевое расстояние	C _{min} , MM	50	60	75	90	130	143



Фактор влияния направления срезающей нагрузки

табл. 2.3.18

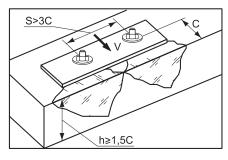

Фактор влияния направления срезающей нагрузки f _a								
$\alpha_{_{_{\boldsymbol{v}}}}$	0°-55°	60°	65°	70°	75°	80°	85°	90°-180°
f _a	1,0	1,07	1,14	1,23	1,35	1,50	1,71	2,0

Фактор влияния краевого расстояния для одного анкера

Для толщины бетона h ≥ 1,5C

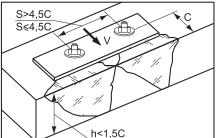
$$f_{cs,V}^{n=2} = \frac{c}{c_{min}} \times \sqrt{\frac{c}{c_{min}}}$$

Для толщины бетона h < 1,5C


$$f_{cs,V}^{n=1} = \frac{h/1,5}{c_{min}} \times \sqrt{\frac{h/1,5}{c_{min}}}$$

S≼3C h≥1,5C

Фактор влияния осевого и краевого расстояний для пары анкеров


Для толщины бетона $h \ge 1,5C$ и осевого расстояния $S \le 3C$

$$f_{cs,V}^{n=2} = \frac{3 \times c + s}{6 \times c_{min}} \times \sqrt{\frac{c}{c_{min}}}$$

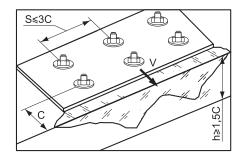
Для толщины бетона $h \ge 1,5C$ и осевого расстояния S > 3C

$$f_{cs,V}^{n=2} = \frac{c}{c_{min}} \times \sqrt{\frac{c}{c_{min}}}$$

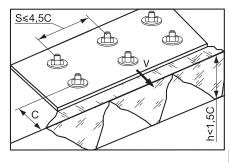
Для толщины бетона h < 1,5С и осевого расстояния S ≤ 4,5С

$$f_{cs,V}^{n=2} = \frac{2 \times h + s}{6 \times c_{min}} \times \sqrt{\frac{h/1.5}{c_{min}}}$$

Для толщины бетона h < 1,5C и осевого расстояния S > 4,5C


$$f_{cs,V}^{\scriptscriptstyle n=2} = \frac{6.5 \times h}{6 \times c_{min}} \times \sqrt{\frac{h/1.5}{c_{min}}}$$

Фактор влияния краевого и осевого расстояний на группу анкеров n > 2


Для толщины бетона h ≥ 1,5С и осевого расстояния S ≤ 3C

$$f_{cs,V}^{n>2} = \frac{3 \times c + s_1 + s_2 + \dots + s_n}{3 \times n \times c_{min}} \times \sqrt{\frac{c}{c_{min}}}$$

Для толщины бетона h < 1,5C и осевого расстояния $S \le 4,5C$

$$f_{cs,V}^{\scriptscriptstyle n>2} = \frac{2\times h + s_1 + s_2 + \cdots + s_n}{3\times n \times c_{min}} \times \sqrt{\frac{h/1,5}{c_{min}}}$$

2.4 Комбинация нагрузок. Проверочное уравнение

$$\frac{N_{Sd}^{1}}{N_{Rd}} + \frac{V_{Sd}^{1}}{V_{Rd}} \leq 1, 2$$

 N_{sd}^1 , V_{sd}^1 – вырывная и срезающая нагрузки на анкер (задается проектировщиком), кН N_{sd}^1 , V_{sd}^1 – вырывная и срезающая расчетные нагрузки, кН

ПРИМЕР РАСЧЕТА

Дано:

Сжатый бетон С25/30,

Вырывная нагрузка $N_{sd} = 10 \text{ кH},$

Осевое расстояние S = 100 мм,

Краевые расстояния $C_1 = 80$ мм, $C_2 = 80$ мм,

Толщина базового основания h = ∞.

Условие проверки подбора анкера:

$$N_{Sd}^{1} \leq N_{Rd} = min (N_{Rd,s}; N_{Rd,p}; N_{Rd,c}; N_{Rd,sp})$$

Решение:

1. Нагрузка на один анкер

 $N_{Sd}^1 = 10/2 = 5 \text{ kH}.$

Принимаем механический распорный анкер ERA 8/30x90

2. Расчетная нагрузка стали на разрыв

 $N_{\rm Bd\,s} = 12,2$ кH (см.табл. 2.3.7) ≥ 5 кH – условие выполняется.

3. Расчетная нагрузка вырыва анкера из бетона

$$N_{Rd,p} = N_{Rd,p}^0 \times f_B$$

N°_{Rd,p} = 6 кН (см. табл. 2.3.8)

 $f_{\rm p} = 1,1$ (см. табл. 2.3.9)

 $N_{_{\mathrm{Rd,p}}} = 6 \times 1,1 = 6,6 \text{ кH} \ge 5 \text{ кH} - \text{условие выполняется.}$

4. Расчетная нагрузка разрушения бетонного конуса

$$N_{Rd,c} = \ N_{Rd,c}^0 \times \ f_{c1} \ \times \ f_{c2} \times \ f_S \ \times \ f_B$$

 $N_{\text{Rd,c}}^{\circ} = 8,5 \text{ кH (см. табл. 2.3.10)}$

 $f_{c1} = f_{c2} = 1$, для анкеров $C_{cr,N} = C_{min}$ (см. раздел 1.3),

f_{выбираем путем линейной интерполяции из табл. 2.3.11:}

Вычисление производится с помощью крайних значений, обозначенных через х и у.

Соответственно $f_s = y_1 + (S-x_1)(y_2-y_1)/(x_2-x_1)$,

 $f_S = 0.87 + (100-90)(0.93-0.87)/(105-90) = 0.91$

 $N_{\text{Bd,c}} = 8.5 \times 1 \times 1 \times 0.91 \times 1.1 = 8.5 \text{ кH} \ge 5 \text{ кH} - \text{условие выполняется.}$

N_{sd} C₂ C₁ C₁

5. Расчетная нагрузка растрескивания бетона

 $N_{Rd,sp} = N_{Rd,c}^0 \times f_{c,sp1} \times f_{c,sp2} \times f_{c,sp} \times f_B \times f_{h,sp}$

 ${\sf f}_{\sf c.sp1}, \, {\sf f}_{\sf c.sp2}, \, {\sf f}_{\sf s.sp}$ выбираем путем линейной интерполяции

(см. пример в п. 4),

 $f_{c.sp1} = f_{c.sp2} = 0,86$ (см. табл. 2.3.12),

 $f_{s,sp} = 0,7$ (см. табл. 2.3.13),

 $f_{h,sp} = 1,5$ (см. табл. 2.3.14),

 $N_{\rm Rd,sp}^{-} = 8.5 \times 0.86 \times 0.86 \times 0.7 \times 1.5 = 6.6 \ {\rm KH} \ge 5 \ {\rm KH}$ – условие выполняется.

6. Проверка:

$$N_{Sd}^1 \le N_{Rd} = \min \left(N_{Rd,s}; N_{Rd,c}; N_{Rd,p}; N_{Rd,sp} \right) = N_{Rd,sp}$$

5 кН ≤ 6,6 кН – условие выполняется. Анкер подобран правильно.

S, MM	fs
x1 = 90	y1 = 0.87
x2 = 105	y2 = 0,93